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ABSTRACT

This review explores the critical role of synaptic autophagy in
neurodegeneration, highlighting its mechanisms and potential
therapeutic avenues. Neurons rely on synapses for efficient
communication and information processing, with autophagy serving
as a vital cellular process for maintaining synaptic integrity under
various physiological conditions. The review discusses the different
forms of autophagy, macroautophagy, microautophagy, and
chaperone-mediated autophagy and their influence on synaptogenesis,
synaptic elimination, and overall synaptic transmission. We examine
the relationship between impaired autophagic activity and the
pathogenesis of neurodegenerative disorders, such as Alzheimer's and
Parkinson's diseases, which are associated with decreased synaptic
function due to disrupted protein turnover and organelle quality
control. Furthermore, the involvement of key signaling pathways,
including the mTOR pathway, in regulating autophagy and synaptic
health is discussed. By elucidating the interplay between autophagy
and synaptic dynamics, this review underscores the potential of
targeting autophagy-related pathways as a therapeutic strategy in
neurodegenerative diseases, offering insights into the mechanisms
underlying synaptic dysfunction and the broader implications for
neuronal health.
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1. Introduction

Many diseases are caused by defects in the development or formation of synapses, which are necessary for
adequately transmitting electrical information between neurons, neurons, and muscle fibers. In the nervous
system, neurons interact to form neuronal circuits and drive behavior, mainly through synaptic
connections. In neurons, autophagy is amplified during low neuronal activity, sensory deprivation, and
loss of neurotrophic factors that act indirectly through mTOR signaling or in response to amino acid
starvation. Autophagy is a biologically conserved cellular mechanism for the breakdown and recycling of
cellular components via the lysosomal pathway [1,2]. For neurons to smoothly and methodically acquire,
convey, process, and store information, synaptic structure and function must remain intact. The timely
clearance of synaptic contents appears essential for maintaining synaptic function due to the high energy
demand and protein turnover ratio in the synapse region [3]. Autophagy has three distinct forms:
chaperone-mediated, microautophagy, and macroautophagy (Fig. 1) [4]. Additionally, the contribution of
autophagy in synaptogenesis, synaptic elimination, and synaptic transmission has been linked to
neurodevelopmental disorders and neurodegenerative disorders. The primary catabolic mechanism that
neurons employ to preserve the integrity of synaptic vesicle-dependent transmitter release, organelle
quality control, and protein homeostasis of synaptic proteins at postsynaptic locations is macroautophagy
[5]. Additionally, there are too many spines, most likely due to poor spine trimming. Neurodegeneration
malnutrition is linked to decreased autophagy in the brains of people with Parkinson's or Alzheimer's
disease [1,2].
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Figure 1. The three main types of autophagy.
Various chemicals and signaling pathways mediate early synaptogenesis, and synaptogenesis is a multi-

step process [6]. Two important mechanisms for protein degradation in cells are autophagy and the
proteasome-ubiquitin system. Much research has demonstrated the significance of protein degradation
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through the ubiquitin-proteasome system, which is primarily in charge of the turnover of short-lived
cytosolic proteins and regulating synaptic growth. This system also degrades damaged organelles and
long-lived proteins during synaptic development [7]. The differentiation of mouse neural stem cells has
been observed to be accompanied by upregulated autophagy proteins (LC3-1I) and higher levels of the
synaptic protein synaptotagmin 1 [8,9]. The presence of autophagosomes in the synaptic terminals of
cultured hippocampus neurons suggests that autophagy is necessary for synaptogenesis [9]. Furthermore,
autophagy-mediated synaptogenesis is facilitated by the mitogen-activated protein kinase signaling
pathway. It is important to remember that either increased synaptic production or decreased synaptic
deletion might lead to the phenomena of an increased number of synapses. Eliminating unnecessary or
superfluous synaptic connections is called synaptic pruning or synaptic elimination. On the other hand,
several neurodevelopmental disorders are strongly linked to deficiencies in autophagy that result in
inadequate synaptic clearance. A serine/threonine kinase, the mammalian target of rapamycin (mTOR) is
essential for cell survival, growth, proliferation, protein synthesis, and autophagy [10]. mTORC1 inhibits
autophagy in neurons by localizing presynaptic and postsynaptic locations (or lysosomes) [11]. Rapamycin
promotes autophagy in presynaptic terminals, decreases the number of synaptic vesicles (mTOR), which
is a serine/threonine, and inhibits the release of evoked dopamine from kinase, which functions as a crucial
mediator of cell growth through integrating neurons [12]. Multiple upstream signals provide dopaminergic
inputs [13]. At the first stage of autophagosome formation, mTOR prevents autophagy from being activated
[14]. Interestingly, mTOR controls local RNA translation at the synapse, suggesting it plays a role in
synaptic protein synthesis [15]. New research shows how vital the mTOR transmission signal is for
controlling synapses and synaptic plasticity [12,16]. mTOR signaling pathway inhibition Rapamycin
increases autophagic activity in mammalian cells and decreases synaptic vesicle densities in presynaptic
terminals. A serine/threonine mammalian target of rapamycin inhibits evoked dopamine release from
kinase, which functions as a crucial modulator of cell development through integrating neurons [12].
GABA is the primary inhibitory neurotransmitter in the CNS, and autophagy helps postsynaptic terminals
break down specific kinds of receptors. Rapid synaptic inhibition in the brain is mediated by GABAA
receptors (GABAARSs), the main postsynaptic elements of GABAergic synapses. The degradation of a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in cultivated
rat hippocampal neurons upon stimulation is facilitated by glutamatergic N-methyl-D-aspartate receptor
(NMDAR)-dependent autophagy, in addition to GABARs, indicating that autophagy plays a role in
NMDAR-dependent synaptic remodeling [17]. Previously believed to be only cellular waste disposal units,
lysosomes are now recognized as dynamic organelles that play a crucial role in metabolic signaling and
nutrition sensing. They facilitate mTORC1 activation by serving as platforms for assessing nutrient
availability. Additionally, AMPK and lysosomes interact; for instance, lysosomal damage can activate
AMPK through a novel galectin-directed ubiquitin signal transduction mechanism [18]. Axonal
endolysosomal trafficking and proper lysosomal activity are essential for neuronal health. Recent
discoveries have highlighted the importance of these processes in maintaining the structure and
functionality of neurons [19]. Proteinopathic neurodegenerative disorders, which are characterized by the
accumulation of misfolded proteins, are often associated with lysosomal failure. Defects in lysosomal
breakdown mechanisms can accumulate toxic protein aggregates, which can exacerbate neuronal damage
[20]. Autophagy and lysosome-mediated degradation mechanisms are disturbed in a variety of
neurological disorders. Understanding how these disrupted pathways might help guide therapeutic
strategies to restore cellular homeostasis [21]. Recent research indicates that mRNA trafficking on
lysosome-related vesicles is essential for maintaining axonal homeostasis. The fact that neurodegenerative
disorders can arise from disruptions in this transport pathway emphasizes the diverse roles that lysosomes
play in brain function [22]. The mTOR and AMPK pathways interact intricately on the lysosome to regulate
autophagy and cellular metabolism. By phosphorylating components of the mTORCI1 pathway,
particularly the Regulator complex, AMPK can inhibit mTORC1 and cause mTORC1 to become inactive.
This cross-talk ensures that cells adapt to fluctuations in energy levels by appropriately regulating growth
and autophagy [23]. Changes in the intensity of synaptic transmission, dubbed synaptic plasticity, are
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assumed to provide a biological equivalent of learning and memory [24-26]. Disrupted synaptic plasticity
has been described in mouse models as missing autophagy; nonetheless, much of the mechanism of
autophagy affecting synaptic plasticity remains unclear. In certain situations, autophagy controls long-term
potentiation [27-30]. Glatigny et al. showed that theta burst stimulation-induced LTP in CA1 is blocked by
pharmacologically inhibiting autophagy with Spautin-1 [31]. According to Nikoletopoulou and associates,
brain-derived neurotrophic factor (BDNF) inhibits ongoing autophagy in the hippocampus to allow for
LTP [32-36]. Since abnormal autophagy has been linked to increased hippocampus mGIuR-LTD in a mouse
model of fragile X syndrome, autophagy may be involved in long-term depression (LTD) [37]. There are
various ways that autophagy could support synaptic plasticity. First, during LTD, autophagy may actively
break down AMPA receptors to weaken synapses [17]. Second, other synapse-associated proteins
necessary for postsynaptic membrane remodeling during plasticity may be broken down by autophagy
[32,37]. Through the breakdown of mitochondria or the endoplasmic reticulum, autophagy may also
control the amounts of cytosolic calcium in the pre-or post-synaptic components [38-40]. Additionally, it
should be mentioned that several kinases that control autophagic activity, such as mTOR, Akt, and AMPK,
are implicated in synaptic plasticity [41-42]. However, it is unclear if these kinases modify synaptic
plasticity through autophagy. mTOR comes in two complexes: mTORC1 and mTORC2. In particular,
growth hormones, energy levels, and the availability of nutrients all influence mTORC1, a master regulator
of cell development and metabolism. mTORC1 is activated on the lysosomal surface, combining signals to
prevent autophagy and promote anabolic processes. Dysregulation of the mTOR pathway has been
connected to several cancers, underscoring the significance of this system for cell survival and growth [43].
Particularly in neurodegenerative environments, mTORCI is crucial. Because autophagy is essential for
destroying misfolded proteins and damaged organelles, mTORC1 activation can lead to the accumulation
of toxic protein aggregates that are suggestive of neurodegenerative diseases [44]. To maintain cellular
equilibrium, damaged proteins and organelles are broken down and recycled via a process known as
autophagy. In neurons, synaptic autophagy specifically targets synaptic components, including proteins
and organelles, to preserve proper synaptic function and plasticity. Dysregulated autophagy has been
linked in recent studies to behavioral and synaptic abnormalities linked to psychiatric and
neurodegenerative diseases. Damaged synaptic components build up when autophagy is compromised,
resulting in synapse loss and dysfunction —two characteristics that are characteristic of neurodegenerative
disorders [45]. Dysregulation of this pathway can lead to synaptic dysfunction, which can be seen in
conditions like AD, PD, and ALS [46,47]. Autophagy malfunction in AD leads to the buildup of neurotoxic
tau proteins and amyloid-beta (AB) peptides. Studies have shown that mutations in presenilin-1, a gamma-
secretase complex component, impair lysosome function, promote the buildup of AP, and result in
neuronal death. Additionally, Ap accumulation and consequent neurodegeneration are caused by defective
autophagy in neurons due to decreased Beclin 1 gene expression [3,48,49]. A disruption in autophagic flux
is associated with the accumulation of tau tangles and amyloid-beta plaques in Alzheimer's disease, leading
to synapse loss and cognitive impairment. In PD, autophagic failure is linked to alpha-synuclein buildup,
which results in the death of dopaminergic neurons [50]. One feature of Huntington's disease HD is the
rise in mutant huntingtin protein. Impaired autophagy fails to eliminate these protein aggregates, leading
to neuronal injury and synaptic dysfunction. Research indicates that HD is characterized by impaired
autophagic activity, which speeds up the progression of the illness [21].

2. Therapeutic Opportunities

Early stages of Alzheimer's disease have been linked to impaired synaptic autophagy, which makes it a
potential target for therapeutic therapies. Although safety considerations must be taken into account,
researchers are investigating ways to modify autophagy to cure various illnesses [51]. As we learn more
about synaptic autophagy, new treatments that target this process may be developed to restore synaptic
function and stop or halt neurodegenerative disease progression. Pharmacological agents that stimulate
autophagy, including rapamycin and resveratrol, have shown promise in preclinical models by improving
synaptic function and reducing neurodegeneration [52]. Gene therapy approaches targeting genes
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associated with autophagy are being researched to enhance neuronal survival and restore autophagic flux
[53]. Additionally, lifestyle modifications like exercise and calorie restriction may offer non-
pharmacological neuroprotection methods because they have been connected to enhanced autophagic
activity. These strategies show that various therapy strategies targeting synaptic autophagy can be
developed to combat neurodegenerative diseases. To assess their therapeutic potential for reducing AD-
related pathology, Bjorkli et al. repurposed two FDA-approved medications, Fasudil and Lonafarnib,
which target the synaptic development (i.e, Wnt signaling) and cellular clearance (i.e.,, autophagic)
pathways, respectively. Targeting separate biochemical cascades prevented the progression of AD
pathology in 3xTg AD mice. The number of amyloid plaques in dSub, their size and number, CSF A[340-
42, and p-tau levels decreased with Fasudil treatment. In contrast, lonsafarnib infusions decreased early
non-fibrillar forms of tau following overexpression in LEC layer II but did not affect intraneuronal [54].
Both medications affected dense-core amyloid plaques rather than diffuse ones, and the former is linked to
microglial activation, neurodegeneration, and cognitive decline in AD patients. Lonafarnib treatment also
decreased the number of amyloid plaques but unanticipatedly increased their size [55]. By employing
autophagy activator medications, which are thought to be a novel avenue for neuroprotection against
misfolded protein toxicity, two structurally related macrolide antibiotics, sirolimus (rapamycin) and
tacrolimus (FK506), as well as their derivatives (rapalogues), everolimus and temsirolimus, can
pharmacologically block mTORCT1 activity, which physiologically occurs during nutrient shortage [56].
These medications are the most potent and effective autophagy activators to date. When rapamycin and
tacrolimus bind to the intracellular receptor FK-506-binding protein 12 (FBP12), which identifies a binding
site on mTOR, they decrease the kinase activity within mTORC1. The scaffolding property of RAPTOR is
counteracted by the complex FBP12-mTOR, which stops mTOR dimerization and activation [57]. It has
recently been discovered that rapamycin-dependent mTORC1 inhibition is a potent autophagy activator.
In experimental models of neurodegenerative diseases, there is strong evidence that all rapamycin analogs
activate autophagy flux, which has neuroprotective effects by preventing the accumulation of aggregation-
prone proteins and boosting neuronal viability [58]. The pro-autophagic activity of metformin, the first-
line medication for type Il diabetes, is mediated by the activation of AMP-activated protein kinase (AMPK),
which has been suggested to contribute to its antiproliferative activity. Metformin's long history of use in
human therapy has demonstrated excellent tolerability [59]. Through direct LKB1-mediated
phosphorylation, metformin induces AMPK activation [60]. Active AMPK either directly activates its
downstream effector ULK1 or inhibits mTORCI1 to promote the production of autophagosomes [61,62].
Small compounds that disrupt lysosomal activity effectively impede autophagy at its late stage because
autophagosomes need to fuse with lysosomes or late endosomes to transport their contents for
disintegration. Autophagic substrate buildup, such as misfolded and aggregated proteins and damaged
mitochondria, as well as the accumulation of LC3-positive autophagosomes that are unable to fuse and be
removed by lysosomes, can be used to visualize this effect [63,64]. Chloroquine (CQ) and its less toxic
cousin, hydroxychloroquine (HCQ), are two primary examples of lysosomal lumen alkalizes. Both
medications are used to treat infectious disorders like malaria and, more recently, cancer [65]. They are the
first and only known autophagy pathway inhibitors authorized for therapeutic use. Depending on dosage
and exposure duration, retinopathy and cardiotoxicity have been observed even though short-term
CQ/HCQ treatment has been deemed safe [66]. TFEB is a master regulator of lysosomal biogenesis and
autophagy. TFEB translocation into the nucleus induced by 15d-PGJ2 requires the production of ROS rather
than mTOR inhibition or calcium-dependent calcineurin signaling. TFEB promotes autophagy and
lysosome biogenesis upon translocation into the nucleus by upregulating the expression of several genes
linked to autophagy and lysosome. At the same time, TFEB transcriptionally increases the expression of
ATF4 to encourage apoptosis. The phosphorylation state of TFEB primarily controls its activity. The
primary kinase in TFEB phosphorylation is mTORC1 [67,68]. When TFEB is dephosphorylated, it quickly
moves into the nucleus to promote lysosome formation and autophagy [69]. Since the nuclear accumulation
of TFEB in response to 15d-PGJ2 did not correlate with mTOR phosphorylation status, the translocation of
TFEB into the nucleus caused by 15d-PGJ2 is most likely independent of mTOR inhibition. Rab proteins,
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including Rab2 and Arl8, have been identified as potential targets for autophagy enhancement in the
nervous system. Activation of these proteins has been shown to increase longevity in neurodegenerative
disease models, suggesting their role in promoting autophagy and neuronal health [70]. These strategies
show that various therapy strategies targeting synaptic autophagy can be developed to combat
neurodegenerative disorders.

3. Conclusion

In conclusion, synaptic autophagy is pivotal in maintaining neuronal health and function, particularly
neurodegeneration. This review has highlighted the complex interplay between autophagic processes and
synaptic dynamics, underscoring how disruptions in autophagy can contribute to the pathogenesis of
neurodegenerative diseases such as AD and PD. As we unravel the mechanisms underpinning synaptic
autophagy, it becomes increasingly clear that targeting autophagy-related pathways may offer innovative
therapeutic opportunities. Enhancing autophagic function could restore synaptic integrity and improve
neuronal communication, ultimately mitigating the progression of neurodegenerative disorders. Future
research should focus on discussing the specific molecular targets within the autophagy pathways and
developing therapeutic strategies to harness their potential in promoting synaptic resilience and neuronal
health. By advancing our understanding of these processes, we can pave the way for novel interventions
to preserve cognitive function and improve outcomes for individuals affected by neurodegenerative
diseases.
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