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1. Introduction

Parkinson's disease, a progressive nervous system disorder affecting movement, manifests diverse signs
and symptoms [1]. Its onset is characterized by mild and often unnoticed early symptoms, typically starting
on one side and later extending to both sides, with more pronounced effects on the initial side [2]. Primarily
impacting dopamine-producing neurons in the substantia nigra region of the brain, Parkinson's disease
disrupts the crucial role of dopamine in regulating body movement, leading to various symptoms [3-6].
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The exact cause remains unknown, although a combination of genetic and environmental factors is believed
to contribute [7, 8]. Dopamine acts as a messenger in the brain and nervous system, crucial for coordinating
body movements [9, 10]. Reduction in dopamine levels due to cell damage in the substantia nigra leads to
abnormal and slow movements, marking the onset of Parkinson's symptoms [11]. Nerve cell loss occurs
gradually, with symptoms emerging when approximately 80% of neurons in the substantia nigra have been
destroyed [12]. Oxidative stress, often induced by stress and injuries, triggers inflammation, adversely
affecting normal brain function [13, 14]. Detectable signs of oxidative damage precede nerve cell
destruction in Parkinson's disease [15], highlighting the potential roles of inflammation and oxidation in
the disease. While no cure exists, medications can alleviate symptoms, and certain natural agents show
promise in symptom reduction.

Agaricus bisporus, commonly known as the white button mushroom, is a rapidly growing fungus with
global popularity for its nutritional richness low in carbohydrates and fats, high in protein, amino acids,
polysaccharides, minerals, multivitamins, and phytochemical components [16, 17]. Notably, it possesses
antioxidant and anti-inflammatory properties [18-20]. Given these characteristics, this study aims to
explore the neuroprotective effects of Agaricus bisporus mushrooms in a rotenone-induced rat model of
Parkinson's disease, focusing on its anti-inflammatory and antioxidant properties.

2. Materials and Methods

2.1. The preparation of mushroom
The mushroom was prepared and chemical analyses showed its composition as follows: protein (47.00%),
carbohydrate (18.00%), fat (3.60%), ash (10.05%), fiber (15.80%) and moisture (3.20%).

2.2. Animals

Sixty male adult Wistar rats, aged 8 weeks, were distributed across six groups, with meticulous attention
to minimizing pain and stress during the experimental procedures. The rats had ad libitum access to water
and feed, and environmental conditions, including temperature and humidity, were maintained within
optimal ranges for their well-being. The animals were subjected to a 12-hour dark/12-hour light cycle.
Group 1, designated as the control group (CON), received 1.00% dimethylsulfoxide (DMSO; Sigma-
Aldrich, St. Louis, MO, USA) at a dose of 0.1 mL/100 g subcutaneously every other day. Additionally,
Tween 80 (10% v/v) was administered daily for three weeks. Group 2 (ROTE) received rotenone (Sigma-
Aldrich), dissolved in 1% DMSQO, subcutaneously every other day at a dose of 1.5 mg/kg for three weeks.
The remaining groups (ABM 100, ABM 200, and ABM 300) received A. bisporus mushroom at doses of 100,
200, and 300 mg/kg, respectively, administered daily for 21 days. The mushroom administration occurred
1 hour before rotenone administration.

2.3. Behavioral responses

At the conclusion of the study on day 21, the open field test and rotarod test were conducted following
established protocols as described by previous researchers [21]. For the open field test, a square wooden
box measuring 80 x 80 x 40 cm, featuring red walls and a black floor divided into a 4 x 4 grid of 16 equal
squares with white lines, was employed. Various parameters were assessed, including latency time
(duration of immobility), ambulation frequency (horizontal movement), grooming frequency (instances of
face scratching, hind limb washing, and forelimb licking), and rearing frequency (vertical movement).
These behaviors were recorded for each rat over a 5-minute period. In the rotarod test, the rats' motor
coordination and balance were evaluated using a rotarod apparatus with dimensions of 90 cm in height, a
3 cm diameter, and a rotation speed of 25 rpm. The latency to fall off the rotarod was recorded as a measure
of motor coordination.
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2.4. Biochemical analyses

At the termination of the study, the rats were humanely euthanized through decapitation, and the right
striatum (ipsilateral to the lesion) was promptly dissected on ice. Striatal dopamine content was determined
using commercial kits and expressed as ng/mg protein. Additionally, the concentrations of pro-
inflammatory cytokines, namely IL-1f3, IL-6, and TNF-a, were measured using commercial kits. Oxidative
parameters in homogenates from the same brain region were assessed to evaluate malondialdehyde (MDA)
levels, reduced glutathione (GSH) concentrations, and the enzyme activities of superoxide dismutase
(SOD) and catalase (CAT).

2.5. The gPCR

For qPCR analysis, RNA extraction was performed using an RNA extraction kit (Cinnagen Inc., Iran)
following the provided procedure instructions. The quality and purity of the extracted RNA were
evaluated through electrophoresis visualization of 285 and 185 ribosomal RNA bands and determining the
A260/A280 ratio using a NanodropTM spectrophotometer. Subsequently, the extracted RNA was stored at
-80 °C for cDNA synthesis. The protocols and primers for Drp-1, PGCla, and TFAM were adopted from
previous studies [22].

2.6. Data analysis

The data were evaluated for normality and because the data were normal, these were analyzed with the
help of ANOVA pathway. All the analyses were conducted and graphs were depicted with the help of
Graph Pad Prism software (version of 6.07).

3. Results

3.1. Behavioral responses

Figure 1 presents the outcomes of the investigation into the impact of A. bisporus mushroom on rotenone-
induced changes in motor activity and coordination, as assessed through the open field and rotarod tests.
Rotenone administration resulted in a significant reduction in the number of ambulations, rearings,
grooming instances, and increased falling time, along with elevated immobility time compared to the
control group (P=0.001). However, the administration of A. bisporus mushroom at doses of 200 mg/kg and
300 mg/kg significantly reversed these effects, leading to increased ambulation, rearing, grooming, and
falling times, along with a decrease in immobility time compared to the ROTE group (P=0.001). Notably,
the 100 mg/kg dose did not yield significant effects.

3.2. Striatal dopamine content

Figure 2 illustrates the results for the effects of A. bisporus mushroom on striatal dopamine content in
rotenone-induced Parkinson rats. The results showed that rotenone significantly decreased striatal
dopamine content compared with control group (P=0.001). The results showed that A. bisporus mushroom
(200 mg/kg and 300 mg/kg) significantly increased striatal dopamine content compared with ROTE group
(P=0.001). It did not have significant effects in 100 mg/kg.

3.3. Inflammatory responses

Figure 3 portrays the outcomes of the study examining the influence of A. bisporus mushroom on the
content of striatal pro-inflammatory cytokines in rats with rotenone-induced Parkinson's disease. The
results indicated a significant increase in striatal pro-inflammatory cytokines content due to rotenone
compared to the control group (P=0.001). Conversely, the administration of A. bisporus mushroom at doses
of 200 mg/kg and 300 mg/kg significantly attenuated the striatal pro-inflammatory cytokines content in
comparison to the ROTE group (P=0.001). Notably, the 100 mg/kg dose did not yield significant effects.
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Figure 1. The effects of Agaricus bisporus mushroom on rotenone-induced alterations in motor activity
and coordination in the open field and rotarod tests. Superscripts (a-d) show significant differences
between groups. Control group (CON), ROTE: Rotenone, ABM 100, ABM 200 and ABM 300: received 100,
200 and 300 mg/kg of A. bisporus mushroom.

3.4. Antioxidant responses

Table 1 provides an overview of the study results, highlighting the effects of A. bisporus mushroom on
striatal antioxidant responses. Rotenone administration led to a significant decrease in the activities of SOD,
GSH, and CAT, accompanied by an increase in MDA compared to the control group (P=0.001). However,
A. bisporus mushroom at doses of 200 mg/kg and 300 mg/kg demonstrated a significant increase in the
activities of SOD, GSH, and CAT, coupled with a decrease in MDA compared to both the control and ROTE
groups (P=0.001). Notably, the 100 mg/kg dose did not yield significant effects.
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Figure 2. The effects of Agaricus bisporus mushroom on striatal dopamine content. Superscripts (a-d)
show significant differences between groups. Control group (CON), ROTE: Rotenone, ABM 100, ABM
200 and ABM 300: received 100, 200 and 300 mg/kg of A. bisporus mushroom.
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Figure 3. The effects of Agaricus bisporus mushroom on striatal pro-inflammatory cytokines. Superscripts
(a-d) show significant differences between groups. Control group (CON), ROTE: Rotenone, ABM 100, ABM
200 and ABM 300: received 100, 200 and 300 mg/kg of A. bisporus mushroom.

3.5. The expression of Drp-1, PGC1la and TFAM

Figure 4 presents the findings regarding the influence of A. bisporus mushroom on the expressions of Drp-
1, PGCla, and TFAM. Rotenone administration significantly decreased Drp-1 expression and increased
PGCla and TFAM expressions when compared to the control group (P=0.001). In contrast, A. bisporus
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mushroom at doses of 200 mg/kg and 300 mg/kg significantly increased Drp-1 expression and decreased
PGCla and TFAM expressions compared to the ROTE group (P=0.001). However, the 100 mg/kg dose did
not yield significant effects.

Table 1. The effects of Agaricus bisporus mushroom on striatal antioxidant responses

Groups MDA SOD GSH CAT
CON 7.78+0.56¢  341.23+8.20a 10.52+0.212 41.10+1.202
ROTE 45.23+1.232  156.23+8.454 0.78+0.414 6.32+0.454
ABM100  42.18+2.100  163.96+4.254 1.05+0.254 6.96+1.254
ABM200  36.51+2.33> 197.32+14.33b 3.63+0.53> 17.12+1.33p
ABM300 25.10+2.20¢  145.20+16.30¢ 6.32+1.45¢ 25.32+3.21¢

P-values 0.001 0.001 0.001 0.001
Superscripts (a-d) show significant differences between groups. Control group (CON), ROTE: Rotenone, ABM 100,
ABM 200 and ABM 300: received 100, 200 and 300 mg/kg of A. bisporus mushroom.
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Figure 4. The effects of Agaricus bisporus mushroom on the expressions of Drp-1, PGCla and TFAM.
Superscripts (a-d) show significant differences between groups. Control group (CON), ROTE: Rotenone,
ABM 100, ABM 200 and ABM 300: received 100, 200 and 300 mg/kg of A. bisporus mushroom.
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4. Discussion

This study aimed to assess the neuroprotective effects of A. bisporus mushroom in a rotenone-induced rat
model of Parkinson’s disease. The results indicated that rotenone had detrimental effects on behavioral
responses, consistent with previous studies [23-25]. These cognitive and behavioral symptoms, including
depression, anxiety, and loss of interest, align with common manifestations of Parkinson's disease. In
advanced stages, dementia can also occur [26], accompanied by sleep disturbances and sensory issues [27].
Rotenone's impact on behavioral responses may be linked to its inflammatory, oxidative, and dopaminergic
effects, as discussed. Notably, A. bisporus mushroom demonstrated an improvement in behavioral
responses, aligning with findings from other studies on mushroom effects [28, 29]. Furthermore, rotenone
significantly reduced dopamine levels, corroborating existing research [30, 31]. In Parkinson's disease, the
progressive loss of dopamine-producing neurons in the brain leads to symptoms like tremors, slowness,
stiffness, and balance issues [32]. Dopamine, a crucial neurotransmitter, regulates various body functions,
particularly movement and coordination [31]. Low dopamine levels result in movement problems,
disrupting the nigrostriatal pathway between the substantia nigra and the striatum in the basal ganglia.
Studies indicate that individuals with Parkinson's lose a substantial percentage of dopamine-producing
cells in the substantia nigra [35, 36]. Interestingly, higher doses of A. bisporus mushroom were associated
with increased dopamine levels, suggesting potential protective and antioxidant effects. However, the lack
of positive effects at 100 mg/kg may be attributed to its lower concentration of active components. These
findings underscore the potential of A. bisporus mushroom as a protective agent against Parkinson's
disease, with dose-dependent effects on behavioral responses and dopamine levels. The results indicated
that rotenone heightened inflammation and inflammatory responses, consistent with prior research [37,
38]. Numerous studies on patients with Parkinson's disease have reported alterations in inflammatory
markers and immune cell populations in peripheral blood and cerebrospinal fluid. These changes may
trigger or intensify neuroinflammation, perpetuating the neurodegenerative process [39, 40]. Several
disease-related genes and risk factors are recognized as immune function modulators in Parkinson's
disease. Growing evidence suggests the involvement of viral or bacterial exposures, pesticides, and
alterations in gut microbiota in the disease's pathogenesis [41, 42]. Therefore, inflammation plays a
substantial role in Parkinson's disease.

Conversely, the application of A. bisporus mushroom significantly decreased inflammation, aligning with
findings from other studies [43, 44]. This suggests that A. bisporus mushroom possesses dose-dependent
anti-inflammatory properties attributed to its specific compounds. In summary, rotenone exhibited pro-
inflammatory effects, while the mushroom mitigated these effects, highlighting its potential as an anti-
inflammatory agent in the context of Parkinson's disease. Rotenone induced a reduction in antioxidant
enzymes' concentration and increased Malondialdehyde (MDA) content, consistent with previous studies
exploring rotenone's impact on antioxidant responses in the context of Parkinson's disease [45, 46].
Oxidation plays a crucial role in disease progression, and measuring MDA levels, as a biomarker of
oxidative stress, is pivotal for assessing the severity of oxidative damage. MDA, a highly reactive aldehyde
compound, is generated through the peroxidation of unsaturated fatty acids. As an indicator of oxidative
stress, MDA's reactivity extends to attacking other molecules, influencing their function, and ultimately
impacting cellular function through the formation of strong covalent bonds [47, 48].

Catalase, an enzyme present in various living organisms, breaks down hydrogen peroxide into oxygen and
water, contributing to the cellular defense against oxidative stress [49]. Superoxide dismutase (SOD) acts
as an antioxidant and anti-inflammatory agent by neutralizing free radicals and preventing aging [50].
Glutathione peroxidase, another vital enzyme, protects organisms from oxidative damage by reducing
lipid hydroperoxides to corresponding alcohols and converting free hydrogen peroxide to water [51]. The
observed decrease in antioxidant enzymes and the rise in MDA levels in the context of Parkinson's disease
highlight the close relationship between the condition and oxidative stress. Conversely, A. bisporus
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mushroom exhibited antioxidant properties by significantly mitigating the decline in antioxidant enzymes.
These results align with previous studies emphasizing the antioxidant potential of A. bisporus mushroom
[52, 53]. The mushroom's ability to counteract oxidation could prove beneficial in alleviating the oxidative
stress associated with Parkinson's disease. Furthermore, rotenone significantly altered the expression of
Drp-1, PGCla, and TFAM. Neurons rely on Drp-1 for axon maintenance and survival, while TFAM is
closely associated with oxidative stress [22]. Therefore, these molecules play significant roles in reducing
damage. The A. bisporus mushroom demonstrated the ability to significantly decrease the expression of
these molecules, mitigating their negative effects. These findings underscore the potential neuroprotective
effects of A. bisporus mushroom at the molecular level in the context of Parkinson's disease.

5. Conclusions

The outcomes of this study highlight the potential preventive effects of ABM200 and ABM300 against
Parkinson's disease, particularly in relation to inflammation and oxidative stress. It is essential to note the
study's limitation in being conducted on rats. However, the encouraging results provide a foundation for
further investigations and warrant consideration in the ongoing exploration of preventive measures for
Parkinson's disease.
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