[ Downloaded from neuroupdates.de on 2026-01-31 ]

[ DOI: 10.47176/update.2024.108 ]

fleurolpdates

Neuroscience Updates, 2024; 2(1): 108-121

Review Article

Emerging Insights into Gut-Brain Axis Dysregulation in
Neurodegenerative Disorders

Al-Hassan Soliman Wadan'* | Dana Saeed El- Gemaie? | Mohamed Abdelsattar Ahmed3

Department of Oral Biology, Faculty
of Dentistry, Galala University, Suez,
Egypt

2Department of Endodontics, Faculty
of Dentistry, Galala University, Suez,
Egypt

SFaculty  of  Dentistry,  Sinai
University, Kantara Branch, Ismailia,

Egypt

*Correspondence:
Al-Hassan Soliman Wadan
Alhassan.soliman.168@gmail.com

0000-0003-2282-4046

Checked for Plagiarism: Yes

Peer reviewers approved by:

Dr. Melika Andrew

Editor who approved publication:
Dr. Nasrollah Moradikor
Language Editor:

Dr. Adeel Ahmed Abbasi

Article History:

Received: October 20, 2024
Accepted: December 05, 2024
Published: December 15, 2024

d-! 10.47176/update.2024.108

Check for
updates

ABSTRACT

This review explores the emerging insights into the gut-brain axis
(GBA) and its dysregulation in neurodegenerative disorders such as
Alzheimer's, Parkinson's, and Huntington's. The GBA represents a
complex communication network linking the intestinal microbiome
with the central nervous system (CNS), facilitated by neuro-immuno-
endocrine mediators. Such interactions profoundly influence brain
health, cognitive functions, and various systemic diseases. Dysbiosis of
gut microbiota may be implicated in the pathogenesis of
neurodegenerative conditions through mechanisms involving
inflammation, metabolic regulation, and neurotransmitter activity.
Additionally, dietary habits, lifestyle choices, and environmental
factors significantly affect individual gut microbiota profiles, further
shaping neurological health. The review highlights the potential of
microbiome-based therapies as innovative intervention strategies,
emphasizing the metabolic contribution of gut bacteria, such as short-
chain fatty acids (SCFAs), to brain function and mood regulation.
Understanding these intricate relationships paves the way for novel
therapeutic targets to ameliorate neurodegenerative symptoms and
enhance overall brain health.
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1. Introduction

The gut-brain axis is defined as the two-way communication network that connects the intestinal
microbiome with the central nervous system (CNS) [1,2]. The two-way communication system, the gut-
brain axis, is mediated by the enteric nervous system, microbial metabolites, and gut microbiota. It includes
neurological, hormonal, and immunological pathways. The gastrointestinal tract and the central nervous
system communicate in both directions through immunological, endocrine, humoral, and neurological
connections [3]. The mechanisms underlying GBA communications involve neuro-immuno-endocrine
mediators. The gut-brain axis is recognized as one of the major pathways by which properties and health
status of the microbiome can influence not just brain health but also various types of diseases across all
other systems in the body [4,5]. Alzheimer’s, Parkinson’s, and Huntington’s diseases are some examples of
neurodegenerative disorders that are characterized by progressive neuronal loss and dysfunction over
time, leading to decreased cognition and motor functions [6,7]. Gut microbiomes play key roles in
neurological disorders, mainly through regulating inflammation, communication, and metabolism with
the CNS. There is potential for customized microbiome-based therapies due to the complicated interactions
between nutrition, microbiota makeup, and neuro-health (Fig. 1) [2,4,8,9]. Complex carbs and fibers are
metabolized by intestinal microbiota. This procedure indirectly suggests involvement from a metabolic
route because it directly affects the host's energy balance and metabolic health. The gut flora also influences
the immune system's maturation and development. It is a crucial defense mechanism against external
microorganisms because it increases infection resistance and affects systemic immunity. Additionally, the
production of conjugate bile acids and vital vitamins by the gut microorganisms aids in the breakdown of
fat. The fermentation of food fibers into short-chain fatty acids (SCFAs), a form of host signaling chemical
and energy source, is an example of the gut microbiome's metabolic function [10]. The expression of the
individual's gut microbiota can be easily reflected by geographical and cultural differences in lifestyle
choices, environmental exposures, and dietary habits (Fig. 2) [11]. Various factors, including drug use,
stress levels, sleep patterns, and physical exercise, may impact the gut flora. According to [12], These factors
modify the microbial population, which impacts its makeup and capabilities. Hormonal signaling, a crucial
pathway in gut-brain communication, is how the gut bacteria work. For instance, changes in tryptophan
metabolism linked to the gut microbiota impair serotonin activity in the brain and are a contributing factor
to mood disorders that are accompanied by gastrointestinal dysfunction [1]. This modulation can also
improve a person's ability to process emotions and thoughts. The brain-gut link depends on SCFAs and
other signaling chemicals [5]. The artificial synthesis of these molecules could be a novel therapeutic target
for neurodegenerative diseases. Hormonal signaling, a crucial pathway in gut-brain communication, is
how gutbacteria work. For instance, changes in tryptophan metabolism linked to the gut microbiota impair
serotonin activity in the brain and are a contributing factor to mood disorders that are accompanied by
gastrointestinal dysfunction [1]. Progressive loss of neurons or other neurological cells inside the central
nervous system is the primary cause of neurodegenerative disorders. These neurodegenerative illnesses
can have a wide range of pathologies and symptoms, and the majority of them have different causes and
processes. Because of these cell losses, neurons are particularly vulnerable to harm [6]. According to current
theories, extracellular amyloid plaques and intraneuronal neurofibrillary tangles composed of tau proteins
and amyloid-f3 peptides are the main components of Alzheimer's disease pathogenesis. In addition to
interfering with synaptic processes essential for memory and cognition, these toxic deposits cause synapse
loss by impairing axon and dendritic maintenance or neuron death. The development of neurodegenerative
illnesses may be impacted by increased gut and blood-brain barrier leakiness, brain amyloid and
lipopolysaccharide release, and inflammatory reactions by the gut microbiota [8,13]. According to a study,
the gut microbiota and its metabolites, glutamine and serotonin, respectively, raised the risk of Parkinson's
and Alzheimer's illnesses. These findings provide insight into the underlying mechanisms of
neurodegenerative disorders and demonstrate the potential of gut bacteria and its metabolites as
therapeutic targets [14].
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Figure 1. This diagram emphasizes the anatomical and functional link between the gut and brain, mediated by the vagus nerve. It
showcases gut hormones, microbial metabolites, and immune cell interactions within the gut epithelium, represented by various cell
types, including enteroendocrine cells, goblet cells, and macrophages. The vagus nerve transmits chemical signals from the gut lumen
to the brain, influenced by bacterial activity and metabolites. Key immune responses, such as IgA secretion, further underline the
complexity of gut-brain interactions.

Another study investigated how certain dietary and lifestyle choices affect how the gut microbiota
regulates neurodegenerative diseases and how non-pharmacological therapies targeting gut microbiota,
food, and lifestyle can enhance brain resilience or alterations [15]. Dietary behaviors have an indirect impact
on adult neurogenesis and gut microbiota composition, as well as a direct impact on neuronal function and
brain health [15]. Fatty acids with short-chain SCFAs from the gut microbiota improve the elimination of
cellular waste and reduce histone acetylation. It affects neurodegeneration and is an example of the intricate
relationships between gut flora and brain function [16]. In addition to influencing neurogenesis and brain
aging concerning neurodevelopmental age-related and neurodegenerative illnesses, the gut microbiota
also controls the activity of neural stem cells in these brain regions where new neurons are produced [17].
Dysbiosis, an imbalance in the gut microbiota that disrupts the gut microbial ecology, causes
neurodegenerative disorders of varying stages and severity [18]. Recently, it has been discovered that some
types of gut microbiome dysbiosis are caused by dementia and correlate with autoimmune dysregulation,
chronic inflammation, and protein misfolding [18]. For instance, intestinal inflammation and
gastrointestinal symptoms have been linked to changes in gut microbiomes in Parkinson's disease.

2. Gut-Derived Metabolites

According to [19], microbial products are crucial for immune system performance, cognitive health, and
nutritional absorption. Gut-derived tryptophan metabolites highlight the connection between brain health
and microbiota and are linked to neurological diseases [20]. High trimethylamine -N-oxide and indoxyl
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sulfate reflect the intricate relationship between the brain and gut [21]. New therapy options that emphasize
the significance of preserving gut and brain health are provided by microbial metabolites in the gut-brain
axis that disclose the causes of neurodegenerative illnesses (Fig. 3) [9]. The gut microbiota produces SCFAs
from dietary fibers, crucial for brain function and digestive health. Butyrate is the SCFA that has been
shown to have the biggest impact on neurodegenerative illnesses. According to one study, butyrate may
lessen neuroinflammation in models of Alzheimer's disease [22]. These acids participate in processes that
impact the metabolism of fats and cholesterol [19]. Because they alter the blood-brain barrier, lower
neuroinflammation, and promote neurogenesis, SCFAs have a major effect on brain health. However,
butyrate Histone deacetylase inhibitors provide neuroprotection by controlling gene expression. For
instance, a preclinical investigation showed that butyrate can reduce Alzheimer's disease-related amyloid
[3. Excessive SCFAs can disrupt microglia activity and cause a-synuclein misfolding, linked to Parkinson's
disease [23]. However, because it alters the phenotype of microglia, it may cause amyloid 3 to develop in
Alzheimer's disease [24]. It is known that some SCFAs alter microglial activation in Parkinson's disease,
suggesting a potential strategy to slow the disease's progression [25]. Through various methods, these
metabolites generated by the gut microbiota regulate the brain's inflammatory processes. They penetrate
the blood-brain barrier and alter the activity of brain immune cells called microglial cells, which control
inflammatory reactions in the central nervous system [25]. SCFAs play a dual role in neurodegenerative
diseases, demonstrating the complex interplay between gut microbiota and brain function.
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Figure 2. Factors that contribute to the regulation of the gut-brain axis.

According to [26], tryptophan was mostly broken down by the kynurenine pathway, which produced
active substances that impacted the brain. Among the chemicals formed are quinolinic acid, kynurenine,
and kynurenic acid [27]. By preventing the stimulation of neurotransmitters at NMDA receptors, kynurenic
acid protects the brain. Because it activates NMDA receptors, quinolinic acid is neurotoxic and can lead to
inflammation and cell death in Parkinson's and Alzheimer's illnesses [28]. Other microbial metabolites also
influence CNS's function [29]. One of tryptophan's primary metabolites, kynurenine, is further broken
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down to produce neurotoxic or neuroprotective compounds. Similarly, gut microbiota-derived bile acids
and lipopolysaccharides (LPS) influence neuroimmune responses and can accelerate neurodegenerative
processes [30]. The gut bacteria's ability to metabolize bile acid appears compromised in Alzheimer's
disease, suggesting that it plays a particular function in gut-to-brain communication. In the context of
neurodegenerative disorders, lipopolysaccharides and other microbial metabolites may have the capacity
to cause neuroinflammation. It has been suggested that quinovic acid glycosides, produced by the gut
microbiota, activate neuroinflammatory pathways, including those connected to Parkinson's disease [31-
33]. Because LPS-induced neuroinflammation decreases hippocampal progenitor cell proliferation,
survival, and differentiation, it is more intimately associated with neurodegenerative processes [34].
Neurological illnesses are further caused by the coexistence of neuroinflammation and chronic systemic
inflammation, as well as by BBB destruction during LPS induction and chronic systemic inflammation [35].
In this reciprocal exchange, neurotransmitters are also essential. By altering neurotransmitters, including
catecholamines (epinephrine, norepinephrine, and dopamine), serotonin, glutamine, and y-Aminobutyric
acid (GABA), the gut microbiota can have an impact on brain function [36]. These neurotransmitters can
be produced by the gut microbiota alone or affect how they are synthesized and metabolized.
Neurotransmitters synthesized in the stomach have little chance of getting to the brain since the BBB shields
the brain from all undesirable infections and metabolites. GABA, the primary inhibitory neurotransmitter
of the host nervous system, is the sole exception [9]. While the neurotransmitters generated in the gut act
on the ENS and have a covert effect on the brain, some transporters transfer GABA over the blood-brain
barrier [37,38].
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Figure 3. Gut-Brain Axis and Incretin Peptides in Weight Regulation and Satiety. This figure illustrates the interaction between the
gut and brain via incretin peptides released by enteroendocrine cells in the intestinal lining. These hormones travel through the
bloodstream and stimulate the nucleus of the solitary tract and the area postrema in the brainstem. This signaling pathway influences
satiety and adaptive responses to weight loss by modulating the activity of neurons in the arcuate nucleus, including AgRP neurons.
Integrating gut-brain signals occurs centrally to regulate energy balance and weight homeostasis.

One of the main causes of neurodegenerative illnesses is oxidative stress, which can result from an
imbalance between the body's oxidants and antioxidants. Trillions of helpful bacteria make up the gut
microbiota, crucial for preserving redox equilibrium. Dysregulation of the gut microbiota has been closely
linked to the emergence of neurodegenerative disorders caused by oxidative stress [39]. According to recent
research, the intestinal epithelium cells generate physiological amounts of oxidative stress when the
microbiota is present, which alters the gut microbiota's composition and function. By directly altering
intestinal permeability, these changes in gut microbiota enhance the changes of biomacromolecules that
enter the systemic circulation and central nervous system [40]. By controlling mitochondrial activity [41,42],
gut microbiota can change the state of oxidative stress in cells. It is now widely acknowledged that NO is
neuroprotective at nanomolar concentrations but that oxidative stress, intimately linked to axonal
degeneration, neuroinflammation, and NDs, can occur at greater NO concentrations [43].
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3. How Gut Microbiota Communicate with Brain

Immune signaling, endocrine mediators, and neural communication are direct ways the gut microbiota
affects the brain [44]. Various avenues exist for the gut microbiota to communicate with the brain [45,46].
The enteric nervous system, sometimes called a "second brain," is essential for sending signals from the gut
to the brain; the vagus nerve transmissions are particularly significant [47-49]. One of the main channels
for this communication is the vagus nerve, which transmits sensory data from the gut to the brain.
According to research, numerous gastrointestinal parameters, such as food content and signals produced
from the gut microbiota, can be detected by sensory neurons of the vagus nerve [50,51]. Because of this
two-way contact, the gut can affect brain health and illness states, in addition to the brain influencing gut
function (Fig. 4).
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Figure 4. Three pathways through which gut bacteria influence brain function. (1) Blocked Signal: Active neurotransmitters released
by gut microbes fail to cross the blood-brain barrier. (2) Vagus Nerve Signaling: Microbial neurotransmitters stimulate the vagus
nerve, transmitting signals directly to the brain. (3) Precursor-Mediated Signal: Bacteria produce precursors, such as amino acids,
which cross the barrier and are converted into neurotransmitters within the brain. Each mechanism demonstrates the role of the gut
microbiota in modulating neural communication and behavior.

By activating vagal neurons and changing neurotransmitters like oxytocin and y-aminobutyric acid
(GABA) in the brain, the gut microbiota affects host behaviors, including anxiety, eating, and depression,
according to recent studies [52-54]. A little VN activation causes excessive neurotransmitter activation and
increases, hindering digestion and affecting stomach motility [55,56]. Additionally, VN has been shown to
have immune-regulating effects on intestinal permeability and local immunity. Electrical vagal stimulation
has been shown to reduce the activation of M1 macrophages and elevated levels of proinflammatory
cytokines brought on by abdominal surgery. This may reduce inflammatory reactions following surgery
and enhance postoperative recovery [57]. Additionally, electroacupuncture's activation of VN encourages
the development and appropriate location of tight junction proteins, which reduces intestinal permeability
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and protects the intestinal epithelial barrier [47,58]. For the transmission of physiological signals from the
gut to the brain, microbes depend on several kinds of cells found in the epithelium [59]. Less than 1% of
epithelial cells are enteroendocrine cells (EECs), which release various substances involved in the metabolic
digestion of dietary nutrients [60]. Because of their anatomical location and function, EECs interact with
the gut microbiota to transmit hormone-based output signals to afferent neurons [61]. Furthermore, a study
discovered that a particular subset of EECs can complete signal transduction from the gut through direct
contact with vagal afferent fibers [62,63]. Serotonin, which is mainly produced by gut enterochromaffin
cells and regulates several physiological functions, is another pathway that directly or indirectly influences
brain activity. Remarkably, probiotic Bifidobacterium treatment reduced depression in a rat model of
depression by increasing serotonin and serotonin precursors [64]. The gut barrier is one crucial barrier that
supports and preserves health in gastrointestinal and systemic settings. Acting as a selective barrier allows
the body to receive nutrients while keeping harmful substances and infectious organisms out of the general
circulation [65]. The gut microbiota, which helps control immunological responses, has been directly linked
to the operation of the gut barrier [66]. Increased gut permeability, or "leaky gut," results from disruptions
in the gut microbiota and has been connected to several illnesses [67]. The BBB is a protective and selective
barrier that keeps the brain safe from infections and blood from circulating away. The breakdown of the
BBB has been linked to diseases of the gut flora. Accordingly, maintaining a healthy gut microbiota is
essential for protecting the BBB [68]. The host's entire immune response is significantly influenced by the
makeup and activity of the gut microbiota itself (Fig. 3) [69-71]. Given all of this knowledge, dysbiosis may
result in immune-mediated inflammation on a local and systemic level and neuroinflammatory
inflammation, which has been shown to contribute to neurodegeneration [72,73]. This dysbiosis of the gut
microbiota may also be the source of chronic inflammation, which triggers systemic chronic inflammation
by releasing pro-inflammatory cytokines and components of the bacterial cell wall. This increases the
neurodegenerative effects of inflammatory mediators and neurotoxic chemicals by facilitating their
entrance into the brain [74-76].

4. Gut Microbiota and Neurodegeneration

4.1. Alzheimer’s disease

Alzheimer's disease (AD) is a neurodegenerative condition that gradually deteriorates the central nervous
system (CNS) and causes cognitive loss. Amyloid-beta (Ap) deposition in the extracellular space as neurotic
plaques and intracellular buildup of hyperphosphorylated tau as neurofibrillary tangles (NFTs) remain the
predominant neuropathological markers for diagnosing AD. Alzheimer's disease patients have severe
behavioral, cognitive, and memory problems that significantly impact their day-to-day activities.
Deposition of amyloid-3 (Af) surrounding neurons, progressive synaptic failure, neuronal death, and
hyperphosphorylated tau protein (also known as t protein) aggregation in neuronal dendrites and axons
are the hallmarks of this neurodegenerative disease [77]. The primary constituent of the plaques observed
in AD patients is AP peptide [78]. These plaques are created when many pathogenic bacteria invade the
brain, including HSV-1, CMV, Borrelia burgdorferi, Porphyromonas gingivalis, and others. The function
of microbial metabolites in AD is also unusual, in addition to the alteration in gut diversity. There are two
ways that the metabolites of the gut microbiota affect AD: either they are absorbed from the gut and travel
through the systemic circulation to the brain, where they impact brain function, or they act on the local
neuronal cells in the gut and surrounding tissues to send signals to the brain. According to [79-82], these
metabolites include GABA, monoamines, SCFAs, BDNF, beta-methylamino-L-alanine, dopamine, and
serotonin. The scientific community has begun investigating methods to modify the microbiome to
alleviate AD pathogenesis. Although the gut microbiota can be altered in several ways, such as probiotics,
prebiotics, antibiotics, symbiotics, and dietary changes, diet is still the predominant factor influencing the
gut microbiota [83]. Similarly, new research has linked gut microbiota to the genesis of AD. The
identification of a metabolic metabolite from the microbiota in the cerebral fluid of AD patients, related to
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biomarkers of the disease (phosphorylated tau and phosphorylated tau/A{342), suggests that the gut
microbiota plays a role in the pathophysiology of AD [84]. Compared to APP animals under control, APP-
mutant germ-free mice exhibit less cerebral A3 amyloid pathology in an AP precursor protein (APP)
transgenic mouse model. Rebuilding these germ-free APP animals with standard mouse microbiota could
impede anti-Ap effects [85]. Additionally, long-term broad-spectrum antibiotic therapy improves the
neuropathological phenotype of AD animals and decreases A accumulation [86]. When comparing the
fecal microbiomes and fecal SCFAs of AD-stricken mice and WT mice at various ages, it is found that the
former have significantly lower levels of Ruminococcus and Butyricicoccus and dramatically higher levels
of Verrucomicrobia and Proteobacteria. This suggests that the microbiota's composition and diversity have
changed, while the decreased level of SCFAs further suggests changes in numerous metabolic pathways
[87]. Furthermore, prior research has demonstrated that activated microglia increase Af3 accumulation and
limit AP clearance, contributing to AD pathogenesis [88]. Increased A{3 deposition causes microglia to
generate a variety of proinflammatory mediators, such as iNOS, ROS, COX2, and NF-kB, leading to
neuroinflammation in AD pathophysiology [88].

4.2. Parkinson’s disease

Tremor, muscular rigidity, slowness of movement, and irregular gait are some of the multiple motor
symptoms of Parkinson's disease (PD), a common neurological illness [89]. The primary pathology of PD
is the death of dopaminergic neurons in the substantia nigra, which is followed by a-synuclein buildup
and Lewy body deposition in the remaining neurons [90]. According to new research, a-synucleinopathy,
linked to particular digestive symptoms, is first detected in the enteric nervous system before progressing
to the central nervous system in the early stages of the illness [91]. Constipation and decreased colonic
motor function have been observed in mice transfected with human wild-type a-synuclein. Notably, PD
patients have increased exposure to gut bacteria because of their compromised intestinal function. Regular
interaction between toll-like receptors (TLRs) and microbial metabolism results in increased local
inflammation and impaired a-synuclein deposition clearance, both of which work together to cause
Parkinson's disease neurodegeneration. Also, when PD patients' feces were used to colonize germ-free
mice, the result was higher physical impairments than when healthy controls' feces were used [92].
Metagenomic studies of PD patients and healthy age-matched individuals have produced several lines of
evidence that, while still debatable, indicate dysbiosis in the gut microbiome of PD patients may alter risk
and gradually worsen disease status [92-94]. The microbial profiles of people with PD differ significantly
from those of healthy controls [94]. While the genera Akkermansia, Lactobacillus, and Bifidobacterium rise
in PD patients, dominant taxa (such as Lachnospiraceae, Ruminococcaceae, Faecalibacterium, Roseburia,
and Butyriciccocaceae) that are a part of the core microbial community specializing in carbohydrate and
energy metabolism and involved in the production of butyrate and other SCFAs decline [95,96]. Fiber
deprivation promotes the growth of specific microbial communities that break down the colonic mucus
layer and allow for increased colonization and infiltration of opportunistic pathogens since dietary fiber is
essential for preserving the colonic mucus barrier [97].

5. Conclusion

In conclusion, the complex relationship between gut microbiota and brain function underscores the
significant role that our gut health plays in neurological well-being. The pathways through which gut
bacteria influence brain function, including neurotransmitter modulation, vagus nerve signaling, and the
production of neuroactive precursors, highlight the complex mechanisms involved in this interaction. The
evidence presented indicates that dysbiosis not only disrupts gut barrier integrity but also correlates with
neuroinflammatory processes that can lead to neurodegenerative diseases such as Alzheimer's. As our
understanding of the gut-brain axis expands, it becomes increasingly clear that maintaining a balanced gut
microbiota is crucial for protecting both gut and brain health. Future research may further explore
therapeutic interventions aimed at restoring gut microbiota composition, potentially offering new
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strategies for preventing or mitigating the effects of neurodegenerative disorders and enhancing overall
cognitive function.
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