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ABSTRACT  

This review explores the emerging insights into the gut-brain axis 

(GBA) and its dysregulation in neurodegenerative disorders such as 

Alzheimer's, Parkinson's, and Huntington's. The GBA represents a 

complex communication network linking the intestinal microbiome 

with the central nervous system (CNS), facilitated by neuro-immuno-

endocrine mediators. Such interactions profoundly influence brain 

health, cognitive functions, and various systemic diseases. Dysbiosis of 

gut microbiota may be implicated in the pathogenesis of 

neurodegenerative conditions through mechanisms involving 

inflammation, metabolic regulation, and neurotransmitter activity. 

Additionally, dietary habits, lifestyle choices, and environmental 

factors significantly affect individual gut microbiota profiles, further 

shaping neurological health. The review highlights the potential of 

microbiome-based therapies as innovative intervention strategies, 

emphasizing the metabolic contribution of gut bacteria, such as short-

chain fatty acids (SCFAs), to brain function and mood regulation. 

Understanding these intricate relationships paves the way for novel 

therapeutic targets to ameliorate neurodegenerative symptoms and 

enhance overall brain health.  
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1. Introduction 

The gut-brain axis is defined as the two-way communication network that connects the intestinal 

microbiome with the central nervous system (CNS) [1,2]. The two-way communication system, the gut-

brain axis, is mediated by the enteric nervous system, microbial metabolites, and gut microbiota. It includes 

neurological, hormonal, and immunological pathways. The gastrointestinal tract and the central nervous 

system communicate in both directions through immunological, endocrine, humoral, and neurological 

connections [3]. The mechanisms underlying GBA communications involve neuro-immuno-endocrine 

mediators. The gut-brain axis is recognized as one of the major pathways by which properties and health 

status of the microbiome can influence not just brain health but also various types of diseases across all 

other systems in the body [4,5]. Alzheimer’s, Parkinson’s, and Huntington’s diseases are some examples of 

neurodegenerative disorders that are characterized by progressive neuronal loss and dysfunction over 

time, leading to decreased cognition and motor functions [6,7]. Gut microbiomes play key roles in 

neurological disorders, mainly through regulating inflammation, communication, and metabolism with 

the CNS. There is potential for customized microbiome-based therapies due to the complicated interactions 

between nutrition, microbiota makeup, and neuro-health (Fig. 1) [2,4,8,9]. Complex carbs and fibers are 

metabolized by intestinal microbiota. This procedure indirectly suggests involvement from a metabolic 

route because it directly affects the host's energy balance and metabolic health. The gut flora also influences 

the immune system's maturation and development. It is a crucial defense mechanism against external 

microorganisms because it increases infection resistance and affects systemic immunity. Additionally, the 

production of conjugate bile acids and vital vitamins by the gut microorganisms aids in the breakdown of 

fat. The fermentation of food fibers into short-chain fatty acids (SCFAs), a form of host signaling chemical 

and energy source, is an example of the gut microbiome's metabolic function [10]. The expression of the 

individual's gut microbiota can be easily reflected by geographical and cultural differences in lifestyle 

choices, environmental exposures, and dietary habits (Fig. 2) [11]. Various factors, including drug use, 

stress levels, sleep patterns, and physical exercise, may impact the gut flora. According to [12], These factors 

modify the microbial population, which impacts its makeup and capabilities. Hormonal signaling, a crucial 

pathway in gut-brain communication, is how the gut bacteria work. For instance, changes in tryptophan 

metabolism linked to the gut microbiota impair serotonin activity in the brain and are a contributing factor 

to mood disorders that are accompanied by gastrointestinal dysfunction [1]. This modulation can also 

improve a person's ability to process emotions and thoughts. The brain-gut link depends on SCFAs and 

other signaling chemicals [5]. The artificial synthesis of these molecules could be a novel therapeutic target 

for neurodegenerative diseases. Hormonal signaling, a crucial pathway in gut-brain communication, is 

how gut bacteria work. For instance, changes in tryptophan metabolism linked to the gut microbiota impair 

serotonin activity in the brain and are a contributing factor to mood disorders that are accompanied by 

gastrointestinal dysfunction [1]. Progressive loss of neurons or other neurological cells inside the central 

nervous system is the primary cause of neurodegenerative disorders. These neurodegenerative illnesses 

can have a wide range of pathologies and symptoms, and the majority of them have different causes and 

processes. Because of these cell losses, neurons are particularly vulnerable to harm [6]. According to current 

theories, extracellular amyloid plaques and intraneuronal neurofibrillary tangles composed of tau proteins 

and amyloid-β peptides are the main components of Alzheimer's disease pathogenesis. In addition to 

interfering with synaptic processes essential for memory and cognition, these toxic deposits cause synapse 

loss by impairing axon and dendritic maintenance or neuron death. The development of neurodegenerative 

illnesses may be impacted by increased gut and blood-brain barrier leakiness, brain amyloid and 

lipopolysaccharide release, and inflammatory reactions by the gut microbiota [8,13]. According to a study, 

the gut microbiota and its metabolites, glutamine and serotonin, respectively, raised the risk of Parkinson's 

and Alzheimer's illnesses. These findings provide insight into the underlying mechanisms of 

neurodegenerative disorders and demonstrate the potential of gut bacteria and its metabolites as 

therapeutic targets [14]. 
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Figure 1. This diagram emphasizes the anatomical and functional link between the gut and brain, mediated by the vagus nerve. It 

showcases gut hormones, microbial metabolites, and immune cell interactions within the gut epithelium, represented by various cell 

types, including enteroendocrine cells, goblet cells, and macrophages. The vagus nerve transmits chemical signals from the gut lumen  

to the brain, influenced by bacterial activity and metabolites. Key immune responses, such as IgA secretion, further underline the 

complexity of gut-brain interactions. 

 

Another study investigated how certain dietary and lifestyle choices affect how the gut microbiota 

regulates neurodegenerative diseases and how non-pharmacological therapies targeting gut microbiota, 

food, and lifestyle can enhance brain resilience or alterations [15]. Dietary behaviors have an indirect impact 

on adult neurogenesis and gut microbiota composition, as well as a direct impact on neuronal function and 

brain health [15]. Fatty acids with short-chain SCFAs from the gut microbiota improve the elimination of 

cellular waste and reduce histone acetylation. It affects neurodegeneration and is an example of the intricate 

relationships between gut flora and brain function [16]. In addition to influencing neurogenesis and brain 

aging concerning neurodevelopmental age-related and neurodegenerative illnesses, the gut microbiota 

also controls the activity of neural stem cells in these brain regions where new neurons are produced [17]. 

Dysbiosis, an imbalance in the gut microbiota that disrupts the gut microbial ecology, causes 

neurodegenerative disorders of varying stages and severity [18]. Recently, it has been discovered that some 

types of gut microbiome dysbiosis are caused by dementia and correlate with autoimmune dysregulation, 

chronic inflammation, and protein misfolding [18]. For instance, intestinal inflammation and 

gastrointestinal symptoms have been linked to changes in gut microbiomes in Parkinson's disease. 

 

2. Gut-Derived Metabolites 

According to [19], microbial products are crucial for immune system performance, cognitive health, and 

nutritional absorption. Gut-derived tryptophan metabolites highlight the connection between brain health 

and microbiota and are linked to neurological diseases [20]. High trimethylamine -N-oxide and indoxyl 
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sulfate reflect the intricate relationship between the brain and gut [21]. New therapy options that emphasize 

the significance of preserving gut and brain health are provided by microbial metabolites in the gut-brain 

axis that disclose the causes of neurodegenerative illnesses (Fig. 3) [9]. The gut microbiota produces SCFAs 

from dietary fibers, crucial for brain function and digestive health. Butyrate is the SCFA that has been 

shown to have the biggest impact on neurodegenerative illnesses. According to one study, butyrate may 

lessen neuroinflammation in models of Alzheimer's disease [22]. These acids participate in processes that 

impact the metabolism of fats and cholesterol [19]. Because they alter the blood-brain barrier, lower 

neuroinflammation, and promote neurogenesis, SCFAs have a major effect on brain health. However, 

butyrate Histone deacetylase inhibitors provide neuroprotection by controlling gene expression. For 

instance, a preclinical investigation showed that butyrate can reduce Alzheimer's disease-related amyloid 

β. Excessive SCFAs can disrupt microglia activity and cause α-synuclein misfolding, linked to Parkinson's 

disease [23]. However, because it alters the phenotype of microglia, it may cause amyloid β to develop in 

Alzheimer's disease [24]. It is known that some SCFAs alter microglial activation in Parkinson's disease, 

suggesting a potential strategy to slow the disease's progression [25]. Through various methods, these 

metabolites generated by the gut microbiota regulate the brain's inflammatory processes. They penetrate 

the blood-brain barrier and alter the activity of brain immune cells called microglial cells, which control 

inflammatory reactions in the central nervous system [25]. SCFAs play a dual role in neurodegenerative 

diseases, demonstrating the complex interplay between gut microbiota and brain function. 

 
Figure 2. Factors that contribute to the regulation of the gut-brain axis. 

 

According to [26], tryptophan was mostly broken down by the kynurenine pathway, which produced 

active substances that impacted the brain. Among the chemicals formed are quinolinic acid, kynurenine, 

and kynurenic acid [27]. By preventing the stimulation of neurotransmitters at NMDA receptors, kynurenic 

acid protects the brain. Because it activates NMDA receptors, quinolinic acid is neurotoxic and can lead to 

inflammation and cell death in Parkinson's and Alzheimer's illnesses [28]. Other microbial metabolites also 

influence CNS's function [29]. One of tryptophan's primary metabolites, kynurenine, is further broken 
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down to produce neurotoxic or neuroprotective compounds. Similarly, gut microbiota-derived bile acids 

and lipopolysaccharides (LPS) influence neuroimmune responses and can accelerate neurodegenerative 

processes [30]. The gut bacteria's ability to metabolize bile acid appears compromised in Alzheimer's 

disease, suggesting that it plays a particular function in gut-to-brain communication. In the context of 

neurodegenerative disorders, lipopolysaccharides and other microbial metabolites may have the capacity 

to cause neuroinflammation. It has been suggested that quinovic acid glycosides, produced by the gut 

microbiota, activate neuroinflammatory pathways, including those connected to Parkinson's disease [31-

33]. Because LPS-induced neuroinflammation decreases hippocampal progenitor cell proliferation, 

survival, and differentiation, it is more intimately associated with neurodegenerative processes [34]. 

Neurological illnesses are further caused by the coexistence of neuroinflammation and chronic systemic 

inflammation, as well as by BBB destruction during LPS induction and chronic systemic inflammation [35]. 

In this reciprocal exchange, neurotransmitters are also essential. By altering neurotransmitters, including 

catecholamines (epinephrine, norepinephrine, and dopamine), serotonin, glutamine, and γ-Aminobutyric 

acid (GABA), the gut microbiota can have an impact on brain function [36]. These neurotransmitters can 

be produced by the gut microbiota alone or affect how they are synthesized and metabolized. 

Neurotransmitters synthesized in the stomach have little chance of getting to the brain since the BBB shields 

the brain from all undesirable infections and metabolites. GABA, the primary inhibitory neurotransmitter 

of the host nervous system, is the sole exception [9]. While the neurotransmitters generated in the gut act 

on the ENS and have a covert effect on the brain, some transporters transfer GABA over the blood-brain 

barrier [37,38]. 

Figure 3. Gut-Brain Axis and Incretin Peptides in Weight Regulation and Satiety. This figure illustrates the interaction between the 

gut and brain via incretin peptides released by enteroendocrine cells in the intestinal lining. These hormones travel through the 

bloodstream and stimulate the nucleus of the solitary tract and the area postrema in the brainstem. This signaling pathway influences 

satiety and adaptive responses to weight loss by modulating the activity of neurons in the arcuate nucleus, including AgRP neurons. 

Integrating gut-brain signals occurs centrally to regulate energy balance and weight homeostasis. 

 

One of the main causes of neurodegenerative illnesses is oxidative stress, which can result from an 

imbalance between the body's oxidants and antioxidants. Trillions of helpful bacteria make up the gut 

microbiota, crucial for preserving redox equilibrium. Dysregulation of the gut microbiota has been closely 

linked to the emergence of neurodegenerative disorders caused by oxidative stress [39]. According to recent 

research, the intestinal epithelium cells generate physiological amounts of oxidative stress when the 

microbiota is present, which alters the gut microbiota's composition and function. By directly altering 

intestinal permeability, these changes in gut microbiota enhance the changes of biomacromolecules that 

enter the systemic circulation and central nervous system [40]. By controlling mitochondrial activity [41,42], 

gut microbiota can change the state of oxidative stress in cells. It is now widely acknowledged that NO is 

neuroprotective at nanomolar concentrations but that oxidative stress, intimately linked to axonal 

degeneration, neuroinflammation, and NDs, can occur at greater NO concentrations [43]. 
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3. How Gut Microbiota Communicate with Brain  

Immune signaling, endocrine mediators, and neural communication are direct ways the gut microbiota 

affects the brain [44]. Various avenues exist for the gut microbiota to communicate with the brain [45,46]. 

The enteric nervous system, sometimes called a "second brain," is essential for sending signals from the gut 

to the brain; the vagus nerve transmissions are particularly significant [47-49]. One of the main channels 

for this communication is the vagus nerve, which transmits sensory data from the gut to the brain. 

According to research, numerous gastrointestinal parameters, such as food content and signals produced 

from the gut microbiota, can be detected by sensory neurons of the vagus nerve [50,51]. Because of this 

two-way contact, the gut can affect brain health and illness states, in addition to the brain influencing gut 

function (Fig. 4). 

Figure 4. Three pathways through which gut bacteria influence brain function. (1) Blocked Signal: Active neurotransmitters released 

by gut microbes fail to cross the blood-brain barrier. (2) Vagus Nerve Signaling: Microbial neurotransmitters stimulate the vagus 

nerve, transmitting signals directly to the brain. (3) Precursor-Mediated Signal: Bacteria produce precursors, such as amino acids, 

which cross the barrier and are converted into neurotransmitters within the brain. Each mechanism demonstrates the role of the gut 

microbiota in modulating neural communication and behavior. 

 

By activating vagal neurons and changing neurotransmitters like oxytocin and γ-aminobutyric acid 

(GABA) in the brain, the gut microbiota affects host behaviors, including anxiety, eating, and depression, 

according to recent studies [52-54]. A little VN activation causes excessive neurotransmitter activation and 

increases, hindering digestion and affecting stomach motility [55,56]. Additionally, VN has been shown to 

have immune-regulating effects on intestinal permeability and local immunity. Electrical vagal stimulation 

has been shown to reduce the activation of M1 macrophages and elevated levels of proinflammatory 

cytokines brought on by abdominal surgery. This may reduce inflammatory reactions following surgery 

and enhance postoperative recovery [57]. Additionally, electroacupuncture's activation of VN encourages 

the development and appropriate location of tight junction proteins, which reduces intestinal permeability 
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and protects the intestinal epithelial barrier [47,58]. For the transmission of physiological signals from the 

gut to the brain, microbes depend on several kinds of cells found in the epithelium [59]. Less than 1% of 

epithelial cells are enteroendocrine cells (EECs), which release various substances involved in the metabolic 

digestion of dietary nutrients [60]. Because of their anatomical location and function, EECs interact with 

the gut microbiota to transmit hormone-based output signals to afferent neurons [61]. Furthermore, a study 

discovered that a particular subset of EECs can complete signal transduction from the gut through direct 

contact with vagal afferent fibers [62,63]. Serotonin, which is mainly produced by gut enterochromaffin 

cells and regulates several physiological functions, is another pathway that directly or indirectly influences 

brain activity. Remarkably, probiotic Bifidobacterium treatment reduced depression in a rat model of 

depression by increasing serotonin and serotonin precursors [64]. The gut barrier is one crucial barrier that 

supports and preserves health in gastrointestinal and systemic settings. Acting as a selective barrier allows 

the body to receive nutrients while keeping harmful substances and infectious organisms out of the general 

circulation [65]. The gut microbiota, which helps control immunological responses, has been directly linked 

to the operation of the gut barrier [66]. Increased gut permeability, or "leaky gut," results from disruptions 

in the gut microbiota and has been connected to several illnesses [67]. The BBB is a protective and selective 

barrier that keeps the brain safe from infections and blood from circulating away. The breakdown of the 

BBB has been linked to diseases of the gut flora. Accordingly, maintaining a healthy gut microbiota is 

essential for protecting the BBB [68]. The host's entire immune response is significantly influenced by the 

makeup and activity of the gut microbiota itself (Fig. 3) [69-71]. Given all of this knowledge, dysbiosis may 

result in immune-mediated inflammation on a local and systemic level and neuroinflammatory 

inflammation, which has been shown to contribute to neurodegeneration [72,73]. This dysbiosis of the gut 

microbiota may also be the source of chronic inflammation, which triggers systemic chronic inflammation 

by releasing pro-inflammatory cytokines and components of the bacterial cell wall. This increases the 

neurodegenerative effects of inflammatory mediators and neurotoxic chemicals by facilitating their 

entrance into the brain [74-76]. 

 

4. Gut Microbiota and Neurodegeneration 

 

4.1. Alzheimer’s disease 

Alzheimer's disease (AD) is a neurodegenerative condition that gradually deteriorates the central nervous 

system (CNS) and causes cognitive loss. Amyloid-beta (Aβ) deposition in the extracellular space as neurotic 

plaques and intracellular buildup of hyperphosphorylated tau as neurofibrillary tangles (NFTs) remain the 

predominant neuropathological markers for diagnosing AD. Alzheimer's disease patients have severe 

behavioral, cognitive, and memory problems that significantly impact their day-to-day activities. 

Deposition of amyloid-β (Aβ) surrounding neurons, progressive synaptic failure, neuronal death, and 

hyperphosphorylated tau protein (also known as τ protein) aggregation in neuronal dendrites and axons 

are the hallmarks of this neurodegenerative disease [77]. The primary constituent of the plaques observed 

in AD patients is Aβ peptide [78]. These plaques are created when many pathogenic bacteria invade the 

brain, including HSV-1, CMV, Borrelia burgdorferi, Porphyromonas gingivalis, and others. The function 

of microbial metabolites in AD is also unusual, in addition to the alteration in gut diversity. There are two 

ways that the metabolites of the gut microbiota affect AD: either they are absorbed from the gut and travel 

through the systemic circulation to the brain, where they impact brain function, or they act on the local 

neuronal cells in the gut and surrounding tissues to send signals to the brain. According to [79-82], these 

metabolites include GABA, monoamines, SCFAs, BDNF, beta-methylamino-L-alanine, dopamine, and 

serotonin. The scientific community has begun investigating methods to modify the microbiome to 

alleviate AD pathogenesis. Although the gut microbiota can be altered in several ways, such as probiotics, 

prebiotics, antibiotics, symbiotics, and dietary changes, diet is still the predominant factor influencing the 

gut microbiota [83]. Similarly, new research has linked gut microbiota to the genesis of AD. The 

identification of a metabolic metabolite from the microbiota in the cerebral fluid of AD patients, related to 
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biomarkers of the disease (phosphorylated tau and phosphorylated tau/Aβ42), suggests that the gut 

microbiota plays a role in the pathophysiology of AD [84]. Compared to APP animals under control, APP-

mutant germ-free mice exhibit less cerebral Aβ amyloid pathology in an Aβ precursor protein (APP) 

transgenic mouse model. Rebuilding these germ-free APP animals with standard mouse microbiota could 

impede anti-Aβ effects [85]. Additionally, long-term broad-spectrum antibiotic therapy improves the 

neuropathological phenotype of AD animals and decreases Aβ accumulation [86]. When comparing the 

fecal microbiomes and fecal SCFAs of AD-stricken mice and WT mice at various ages, it is found that the 

former have significantly lower levels of Ruminococcus and Butyricicoccus and dramatically higher levels 

of Verrucomicrobia and Proteobacteria. This suggests that the microbiota's composition and diversity have 

changed, while the decreased level of SCFAs further suggests changes in numerous metabolic pathways 

[87]. Furthermore, prior research has demonstrated that activated microglia increase Aβ accumulation and 

limit Aβ clearance, contributing to AD pathogenesis [88]. Increased Aβ deposition causes microglia to 

generate a variety of proinflammatory mediators, such as iNOS, ROS, COX2, and NF-κB, leading to 

neuroinflammation in AD pathophysiology [88].   

 

4.2. Parkinson’s disease 

Tremor, muscular rigidity, slowness of movement, and irregular gait are some of the multiple motor 

symptoms of Parkinson's disease (PD), a common neurological illness [89].  The primary pathology of PD 

is the death of dopaminergic neurons in the substantia nigra, which is followed by α-synuclein buildup 

and Lewy body deposition in the remaining neurons [90]. According to new research, α-synucleinopathy, 

linked to particular digestive symptoms, is first detected in the enteric nervous system before progressing 

to the central nervous system in the early stages of the illness [91]. Constipation and decreased colonic 

motor function have been observed in mice transfected with human wild-type α-synuclein. Notably, PD 

patients have increased exposure to gut bacteria because of their compromised intestinal function. Regular 

interaction between toll-like receptors (TLRs) and microbial metabolism results in increased local 

inflammation and impaired α-synuclein deposition clearance, both of which work together to cause 

Parkinson's disease neurodegeneration. Also, when PD patients' feces were used to colonize germ-free 

mice, the result was higher physical impairments than when healthy controls' feces were used [92]. 

Metagenomic studies of PD patients and healthy age-matched individuals have produced several lines of 

evidence that, while still debatable, indicate dysbiosis in the gut microbiome of PD patients may alter risk 

and gradually worsen disease status [92-94]. The microbial profiles of people with PD differ significantly 

from those of healthy controls [94].  While the genera Akkermansia, Lactobacillus, and Bifidobacterium rise 

in PD patients, dominant taxa (such as Lachnospiraceae, Ruminococcaceae, Faecalibacterium, Roseburia, 

and Butyriciccocaceae) that are a part of the core microbial community specializing in carbohydrate and 

energy metabolism and involved in the production of butyrate and other SCFAs decline [95,96]. Fiber 

deprivation promotes the growth of specific microbial communities that break down the colonic mucus 

layer and allow for increased colonization and infiltration of opportunistic pathogens since dietary fiber is 

essential for preserving the colonic mucus barrier [97].  

 

5. Conclusion 

In conclusion, the complex relationship between gut microbiota and brain function underscores the 

significant role that our gut health plays in neurological well-being. The pathways through which gut 

bacteria influence brain function, including neurotransmitter modulation, vagus nerve signaling, and the 

production of neuroactive precursors, highlight the complex mechanisms involved in this interaction. The 

evidence presented indicates that dysbiosis not only disrupts gut barrier integrity but also correlates with 

neuroinflammatory processes that can lead to neurodegenerative diseases such as Alzheimer's. As our 

understanding of the gut-brain axis expands, it becomes increasingly clear that maintaining a balanced gut 

microbiota is crucial for protecting both gut and brain health. Future research may further explore 

therapeutic interventions aimed at restoring gut microbiota composition, potentially offering new 
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strategies for preventing or mitigating the effects of neurodegenerative disorders and enhancing overall 

cognitive function. 
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