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ABSTRACT  

This review explores the critical role of synaptic autophagy in 

neurodegeneration, highlighting its mechanisms and potential 

therapeutic avenues. Neurons rely on synapses for efficient 

communication and information processing, with autophagy serving 

as a vital cellular process for maintaining synaptic integrity under 

various physiological conditions. The review discusses the different 

forms of autophagy, macroautophagy, microautophagy, and 

chaperone-mediated autophagy and their influence on synaptogenesis, 

synaptic elimination, and overall synaptic transmission. We examine 

the relationship between impaired autophagic activity and the 

pathogenesis of neurodegenerative disorders, such as Alzheimer's and 

Parkinson's diseases, which are associated with decreased synaptic 

function due to disrupted protein turnover and organelle quality 

control. Furthermore, the involvement of key signaling pathways, 

including the mTOR pathway, in regulating autophagy and synaptic 

health is discussed. By elucidating the interplay between autophagy 

and synaptic dynamics, this review underscores the potential of 

targeting autophagy-related pathways as a therapeutic strategy in 

neurodegenerative diseases, offering insights into the mechanisms 

underlying synaptic dysfunction and the broader implications for 

neuronal health.  

 

KEYWORDS: Synaptic autophagy, mTOR, Signaling pathways, 

Neurodegeneration

 
      10.47176/update.2024.122 

 

 

 

 

 

 

 

 

 [
 D

O
I:

 1
0.

47
17

6/
up

da
te

.2
02

4.
12

2 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 n

eu
ro

up
da

te
s.

de
 o

n 
20

26
-0

1-
31

 ]
 

                             1 / 10

mailto:editorial@neuroupdates.de
http://neuroupdates.de/
https://orcid.org/0009-0004-2283-8776
https://orcid.org/0009-0004-2283-8776
https://orcid.org/0000-0003-2282-4046
https://www.ncbi.nlm.nih.gov/mesh/68001343
https://www.ncbi.nlm.nih.gov/mesh/2101251
https://www.ncbi.nlm.nih.gov/mesh/68015398
https://www.ncbi.nlm.nih.gov/mesh/68009410
https://doi.org/10.47176/update.2024.122
https://crossmark.crossref.org/dialog/?doi=10.47176/update.2024.122
http://dx.doi.org/10.47176/update.2024.122
https://neuroupdates.de/article-1-117-en.html


Neuroscience Updates, 2024; 2(1): 122-131 

123 | Page 

1. Introduction 

Many diseases are caused by defects in the development or formation of synapses, which are necessary for 

adequately transmitting electrical information between neurons, neurons, and muscle fibers. In the nervous 

system, neurons interact to form neuronal circuits and drive behavior, mainly through synaptic 

connections. In neurons, autophagy is amplified during low neuronal activity, sensory deprivation, and 

loss of neurotrophic factors that act indirectly through mTOR signaling or in response to amino acid 

starvation. Autophagy is a biologically conserved cellular mechanism for the breakdown and recycling of 

cellular components via the lysosomal pathway [1,2]. For neurons to smoothly and methodically acquire, 

convey, process, and store information, synaptic structure and function must remain intact. The timely 

clearance of synaptic contents appears essential for maintaining synaptic function due to the high energy 

demand and protein turnover ratio in the synapse region [3]. Autophagy has three distinct forms: 

chaperone-mediated, microautophagy, and macroautophagy (Fig. 1) [4]. Additionally, the contribution of 

autophagy in synaptogenesis, synaptic elimination, and synaptic transmission has been linked to 

neurodevelopmental disorders and neurodegenerative disorders. The primary catabolic mechanism that 

neurons employ to preserve the integrity of synaptic vesicle-dependent transmitter release, organelle 

quality control, and protein homeostasis of synaptic proteins at postsynaptic locations is macroautophagy 

[5]. Additionally, there are too many spines, most likely due to poor spine trimming. Neurodegeneration 

malnutrition is linked to decreased autophagy in the brains of people with Parkinson's or Alzheimer's 

disease [1,2]. 

 

 
Figure 1. The three main types of autophagy. 

 

Various chemicals and signaling pathways mediate early synaptogenesis, and synaptogenesis is a multi-

step process [6]. Two important mechanisms for protein degradation in cells are autophagy and the 

proteasome-ubiquitin system. Much research has demonstrated the significance of protein degradation 
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through the ubiquitin-proteasome system, which is primarily in charge of the turnover of short-lived 

cytosolic proteins and regulating synaptic growth. This system also degrades damaged organelles and 

long-lived proteins during synaptic development [7]. The differentiation of mouse neural stem cells has 

been observed to be accompanied by upregulated autophagy proteins (LC3-II) and higher levels of the 

synaptic protein synaptotagmin 1 [8,9].  The presence of autophagosomes in the synaptic terminals of 

cultured hippocampus neurons suggests that autophagy is necessary for synaptogenesis [9]. Furthermore, 

autophagy-mediated synaptogenesis is facilitated by the mitogen-activated protein kinase signaling 

pathway. It is important to remember that either increased synaptic production or decreased synaptic 

deletion might lead to the phenomena of an increased number of synapses. Eliminating unnecessary or 

superfluous synaptic connections is called synaptic pruning or synaptic elimination. On the other hand, 

several neurodevelopmental disorders are strongly linked to deficiencies in autophagy that result in 

inadequate synaptic clearance. A serine/threonine kinase, the mammalian target of rapamycin (mTOR) is 

essential for cell survival, growth, proliferation, protein synthesis, and autophagy [10]. mTORC1 inhibits 

autophagy in neurons by localizing presynaptic and postsynaptic locations (or lysosomes) [11]. Rapamycin 

promotes autophagy in presynaptic terminals, decreases the number of synaptic vesicles (mTOR), which 

is a serine/threonine, and inhibits the release of evoked dopamine from kinase, which functions as a crucial 

mediator of cell growth through integrating neurons [12]. Multiple upstream signals provide dopaminergic 

inputs [13]. At the first stage of autophagosome formation, mTOR prevents autophagy from being activated 

[14]. Interestingly, mTOR controls local RNA translation at the synapse, suggesting it plays a role in 

synaptic protein synthesis [15]. New research shows how vital the mTOR transmission signal is for 

controlling synapses and synaptic plasticity [12,16]. mTOR signaling pathway inhibition Rapamycin 

increases autophagic activity in mammalian cells and decreases synaptic vesicle densities in presynaptic 

terminals. A serine/threonine mammalian target of rapamycin inhibits evoked dopamine release from 

kinase, which functions as a crucial modulator of cell development through integrating neurons [12]. 

GABA is the primary inhibitory neurotransmitter in the CNS, and autophagy helps postsynaptic terminals 

break down specific kinds of receptors. Rapid synaptic inhibition in the brain is mediated by GABAA 

receptors (GABAARs), the main postsynaptic elements of GABAergic synapses. The degradation of a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors (AMPARs) in cultivated 

rat hippocampal neurons upon stimulation is facilitated by glutamatergic N-methyl-D-aspartate receptor 

(NMDAR)-dependent autophagy, in addition to GABARs, indicating that autophagy plays a role in 

NMDAR-dependent synaptic remodeling [17]. Previously believed to be only cellular waste disposal units, 

lysosomes are now recognized as dynamic organelles that play a crucial role in metabolic signaling and 

nutrition sensing. They facilitate mTORC1 activation by serving as platforms for assessing nutrient 

availability. Additionally, AMPK and lysosomes interact; for instance, lysosomal damage can activate 

AMPK through a novel galectin-directed ubiquitin signal transduction mechanism [18].  Axonal 

endolysosomal trafficking and proper lysosomal activity are essential for neuronal health. Recent 

discoveries have highlighted the importance of these processes in maintaining the structure and 

functionality of neurons [19]. Proteinopathic neurodegenerative disorders, which are characterized by the 

accumulation of misfolded proteins, are often associated with lysosomal failure. Defects in lysosomal 

breakdown mechanisms can accumulate toxic protein aggregates, which can exacerbate neuronal damage 

[20].  Autophagy and lysosome-mediated degradation mechanisms are disturbed in a variety of 

neurological disorders. Understanding how these disrupted pathways might help guide therapeutic 

strategies to restore cellular homeostasis [21]. Recent research indicates that mRNA trafficking on 

lysosome-related vesicles is essential for maintaining axonal homeostasis. The fact that neurodegenerative 

disorders can arise from disruptions in this transport pathway emphasizes the diverse roles that lysosomes 

play in brain function [22]. The mTOR and AMPK pathways interact intricately on the lysosome to regulate 

autophagy and cellular metabolism. By phosphorylating components of the mTORC1 pathway, 

particularly the Regulator complex, AMPK can inhibit mTORC1 and cause mTORC1 to become inactive. 

This cross-talk ensures that cells adapt to fluctuations in energy levels by appropriately regulating growth 

and autophagy [23]. Changes in the intensity of synaptic transmission, dubbed synaptic plasticity, are 
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assumed to provide a biological equivalent of learning and memory [24-26]. Disrupted synaptic plasticity 

has been described in mouse models as missing autophagy; nonetheless, much of the mechanism of 

autophagy affecting synaptic plasticity remains unclear. In certain situations, autophagy controls long-term 

potentiation [27-30]. Glatigny et al. showed that theta burst stimulation-induced LTP in CA1 is blocked by 

pharmacologically inhibiting autophagy with Spautin-1 [31]. According to Nikoletopoulou and associates, 

brain-derived neurotrophic factor (BDNF) inhibits ongoing autophagy in the hippocampus to allow for 

LTP [32-36].  Since abnormal autophagy has been linked to increased hippocampus mGluR-LTD in a mouse 

model of fragile X syndrome, autophagy may be involved in long-term depression (LTD) [37]. There are 

various ways that autophagy could support synaptic plasticity. First, during LTD, autophagy may actively 

break down AMPA receptors to weaken synapses [17]. Second, other synapse-associated proteins 

necessary for postsynaptic membrane remodeling during plasticity may be broken down by autophagy 

[32,37]. Through the breakdown of mitochondria or the endoplasmic reticulum, autophagy may also 

control the amounts of cytosolic calcium in the pre-or post-synaptic components [38-40].  Additionally, it 

should be mentioned that several kinases that control autophagic activity, such as mTOR, Akt, and AMPK, 

are implicated in synaptic plasticity [41-42]. However, it is unclear if these kinases modify synaptic 

plasticity through autophagy. mTOR comes in two complexes: mTORC1 and mTORC2. In particular, 

growth hormones, energy levels, and the availability of nutrients all influence mTORC1, a master regulator 

of cell development and metabolism. mTORC1 is activated on the lysosomal surface, combining signals to 

prevent autophagy and promote anabolic processes. Dysregulation of the mTOR pathway has been 

connected to several cancers, underscoring the significance of this system for cell survival and growth [43]. 

Particularly in neurodegenerative environments, mTORC1 is crucial. Because autophagy is essential for 

destroying misfolded proteins and damaged organelles, mTORC1 activation can lead to the accumulation 

of toxic protein aggregates that are suggestive of neurodegenerative diseases [44]. To maintain cellular 

equilibrium, damaged proteins and organelles are broken down and recycled via a process known as 

autophagy. In neurons, synaptic autophagy specifically targets synaptic components, including proteins 

and organelles, to preserve proper synaptic function and plasticity. Dysregulated autophagy has been 

linked in recent studies to behavioral and synaptic abnormalities linked to psychiatric and 

neurodegenerative diseases. Damaged synaptic components build up when autophagy is compromised, 

resulting in synapse loss and dysfunction—two characteristics that are characteristic of neurodegenerative 

disorders [45]. Dysregulation of this pathway can lead to synaptic dysfunction, which can be seen in 

conditions like AD, PD, and ALS [46,47]. Autophagy malfunction in AD leads to the buildup of neurotoxic 

tau proteins and amyloid-beta (Aβ) peptides. Studies have shown that mutations in presenilin-1, a gamma-

secretase complex component, impair lysosome function, promote the buildup of Aβ, and result in 

neuronal death. Additionally, Aβ accumulation and consequent neurodegeneration are caused by defective 

autophagy in neurons due to decreased Beclin 1 gene expression [3,48,49]. A disruption in autophagic flux 

is associated with the accumulation of tau tangles and amyloid-beta plaques in Alzheimer's disease, leading 

to synapse loss and cognitive impairment. In PD, autophagic failure is linked to alpha-synuclein buildup, 

which results in the death of dopaminergic neurons [50]. One feature of Huntington's disease HD is the 

rise in mutant huntingtin protein. Impaired autophagy fails to eliminate these protein aggregates, leading 

to neuronal injury and synaptic dysfunction. Research indicates that HD is characterized by impaired 

autophagic activity, which speeds up the progression of the illness [21]. 

 

2. Therapeutic Opportunities 

Early stages of Alzheimer's disease have been linked to impaired synaptic autophagy, which makes it a 

potential target for therapeutic therapies. Although safety considerations must be taken into account, 

researchers are investigating ways to modify autophagy to cure various illnesses [51]. As we learn more 

about synaptic autophagy, new treatments that target this process may be developed to restore synaptic 

function and stop or halt neurodegenerative disease progression. Pharmacological agents that stimulate 

autophagy, including rapamycin and resveratrol, have shown promise in preclinical models by improving 

synaptic function and reducing neurodegeneration [52]. Gene therapy approaches targeting genes 
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associated with autophagy are being researched to enhance neuronal survival and restore autophagic flux 

[53]. Additionally, lifestyle modifications like exercise and calorie restriction may offer non-

pharmacological neuroprotection methods because they have been connected to enhanced autophagic 

activity. These strategies show that various therapy strategies targeting synaptic autophagy can be 

developed to combat neurodegenerative diseases. To assess their therapeutic potential for reducing AD-

related pathology, Bjorkli et al. repurposed two FDA-approved medications, Fasudil and Lonafarnib, 

which target the synaptic development (i.e., Wnt signaling) and cellular clearance (i.e., autophagic) 

pathways, respectively. Targeting separate biochemical cascades prevented the progression of AD 

pathology in 3xTg AD mice. The number of amyloid plaques in dSub, their size and number, CSF Aβ40-

42, and p-tau levels decreased with Fasudil treatment. In contrast, lonsafarnib infusions decreased early 

non-fibrillar forms of tau following overexpression in LEC layer II but did not affect intraneuronal [54]. 

Both medications affected dense-core amyloid plaques rather than diffuse ones, and the former is linked to 

microglial activation, neurodegeneration, and cognitive decline in AD patients. Lonafarnib treatment also 

decreased the number of amyloid plaques but unanticipatedly increased their size [55]. By employing 

autophagy activator medications, which are thought to be a novel avenue for neuroprotection against 

misfolded protein toxicity, two structurally related macrolide antibiotics, sirolimus (rapamycin) and 

tacrolimus (FK506), as well as their derivatives (rapalogues), everolimus and temsirolimus, can 

pharmacologically block mTORC1 activity, which physiologically occurs during nutrient shortage [56]. 

These medications are the most potent and effective autophagy activators to date. When rapamycin and 

tacrolimus bind to the intracellular receptor FK-506-binding protein 12 (FBP12), which identifies a binding 

site on mTOR, they decrease the kinase activity within mTORC1. The scaffolding property of RAPTOR is 

counteracted by the complex FBP12-mTOR, which stops mTOR dimerization and activation [57]. It has 

recently been discovered that rapamycin-dependent mTORC1 inhibition is a potent autophagy activator. 

In experimental models of neurodegenerative diseases, there is strong evidence that all rapamycin analogs 

activate autophagy flux, which has neuroprotective effects by preventing the accumulation of aggregation-

prone proteins and boosting neuronal viability [58]. The pro-autophagic activity of metformin, the first-

line medication for type II diabetes, is mediated by the activation of AMP-activated protein kinase (AMPK), 

which has been suggested to contribute to its antiproliferative activity. Metformin's long history of use in 

human therapy has demonstrated excellent tolerability [59]. Through direct LKB1-mediated 

phosphorylation, metformin induces AMPK activation [60]. Active AMPK either directly activates its 

downstream effector ULK1 or inhibits mTORC1 to promote the production of autophagosomes [61,62]. 

Small compounds that disrupt lysosomal activity effectively impede autophagy at its late stage because 

autophagosomes need to fuse with lysosomes or late endosomes to transport their contents for 

disintegration. Autophagic substrate buildup, such as misfolded and aggregated proteins and damaged 

mitochondria, as well as the accumulation of LC3-positive autophagosomes that are unable to fuse and be 

removed by lysosomes, can be used to visualize this effect [63,64]. Chloroquine (CQ) and its less toxic 

cousin, hydroxychloroquine (HCQ), are two primary examples of lysosomal lumen alkalizes. Both 

medications are used to treat infectious disorders like malaria and, more recently, cancer [65]. They are the 

first and only known autophagy pathway inhibitors authorized for therapeutic use. Depending on dosage 

and exposure duration, retinopathy and cardiotoxicity have been observed even though short-term 

CQ/HCQ treatment has been deemed safe [66]. TFEB is a master regulator of lysosomal biogenesis and 

autophagy. TFEB translocation into the nucleus induced by 15d-PGJ2 requires the production of ROS rather 

than mTOR inhibition or calcium-dependent calcineurin signaling. TFEB promotes autophagy and 

lysosome biogenesis upon translocation into the nucleus by upregulating the expression of several genes 

linked to autophagy and lysosome. At the same time, TFEB transcriptionally increases the expression of 

ATF4 to encourage apoptosis. The phosphorylation state of TFEB primarily controls its activity. The 

primary kinase in TFEB phosphorylation is mTORC1 [67,68]. When TFEB is dephosphorylated, it quickly 

moves into the nucleus to promote lysosome formation and autophagy [69]. Since the nuclear accumulation 

of TFEB in response to 15d-PGJ2 did not correlate with mTOR phosphorylation status, the translocation of 

TFEB into the nucleus caused by 15d-PGJ2 is most likely independent of mTOR inhibition. Rab proteins, 
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including Rab2 and Arl8, have been identified as potential targets for autophagy enhancement in the 

nervous system. Activation of these proteins has been shown to increase longevity in neurodegenerative 

disease models, suggesting their role in promoting autophagy and neuronal health [70]. These strategies 

show that various therapy strategies targeting synaptic autophagy can be developed to combat 

neurodegenerative disorders. 

 

3. Conclusion  

In conclusion, synaptic autophagy is pivotal in maintaining neuronal health and function, particularly 

neurodegeneration. This review has highlighted the complex interplay between autophagic processes and 

synaptic dynamics, underscoring how disruptions in autophagy can contribute to the pathogenesis of 

neurodegenerative diseases such as AD and PD. As we unravel the mechanisms underpinning synaptic 

autophagy, it becomes increasingly clear that targeting autophagy-related pathways may offer innovative 

therapeutic opportunities. Enhancing autophagic function could restore synaptic integrity and improve 

neuronal communication, ultimately mitigating the progression of neurodegenerative disorders. Future 

research should focus on discussing the specific molecular targets within the autophagy pathways and 

developing therapeutic strategies to harness their potential in promoting synaptic resilience and neuronal 

health. By advancing our understanding of these processes, we can pave the way for novel interventions 

to preserve cognitive function and improve outcomes for individuals affected by neurodegenerative 

diseases. 
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